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This paper describes the economic phenomenon of price spiking in electric power markets and introduces an

alternative way to model it. A stochastic FitzHugh-Nagumo dynamics in a special regime is proposed as a basic
model for the power market, and an extension of the FitzHugh-Nagumo system is introduced to improve the
statistical features of the basic model. Ideas from stochastic and coherence resonance are used to discuss the

models.
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I. INTRODUCTION

A current financial problem is the explanation and mod-
eling of a disappointing behavior of prices in contemporary
electricity markets. After a worldwide change in the electric
industry regulation policies, markets have been transformed
from regulated and monopolistic to (partially) competitive.
Prices have been left free to fluctuate, and fluctuations turned
out much wilder than expected, certainly very much wilder
than the well-known stock market fluctuations, and very dif-
ferent from them in quality. The most striking aspect of elec-
tricity price time series is spiking, the phenomenon that is the
subject of this paper. No commonly accepted financial model
currently exists which can describe spiking in a satisfactory
way. Outside finance, econophysics is interested in price dy-
namics [1,2]. Financial problems are often successfully stud-
ied using ideas and models from physics, and physics ben-
efits from this interdisciplinary cross-breeding. Spiking will
be discussed in this paper using ideas from the field of sto-
chastic dynamical systems, namely, resonance and the role of
noise in resonance, drawing from stochastic and coherence
resonance studies [3,4]. Two dynamical systems will be used
to study spiking, the well-known FitzHugh-Nagumo system
(FNS) [5] and a proposed extension of it. They will be used
to implement two models of the electricity market—or
power market as it is often called [6]—and these models will
be compared with real-world data from the Alberta, Canada,
power market [7]. A power market will be considered here as
an institutional structure that in a certain way can resonate
with the consumer electricity demand, which is periodic. In
the proposed models, an interplay between nonlinearity and
noise controls the resonance patterns, and such resonance
patterns can take the form of spikes. Three time scales are
involved in the resonance, hidden to some degree in the pa-
rameters of the models, and this feature makes the proposed
models different in nature from the scale-free models that are
often used to study the stock market fluctuations in physics
[1,2,8]. The models are continuous in prices and in time, and
depend on a single source of noise, which makes them par-
ticularly interesting for financial uses and for econometric
applications.

The paper is divided into nine sections. Market data are
presented and discussed in Sec. II. A brief introduction to the
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fascinating and multifaceted economics of power markets is
given in Sec. III. Current mathematical models of these mar-
kets, all of financial origin, are discussed in Sec. IV. Section
V reviews two aspects of the well-known FNS on which the
proposed models are based. Section VI shows how the FNS
can be used as a basic model for the power market and in-
troduces an extension to it. In Sec. VII some tools to extract
and compare statistics from data and simulations are re-
viewed. Section VIII discusses the further possibility for
these models to be used even without any regard to electric-
ity demand, and some general problems encountered when
using power market data from a physics perspective. Section
IX concludes the paper.

II. THE ALBERTA POWER MARKET

Figure 1(a) shows the hourly time series of day-in-
advance capped pool prices per MW h quoted by the Cana-
dian Alberta Electric System Operator (AESO) [7], from
April 7, 2002 to April 6, 2007. AESO is the independent
system operator (ISO) and power exchange for the Alberta
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FIG. 1. Prices and demand in the Alberta power market: five
years from April 7, 2001 to April 6, 2007. (a) Hourly prices in C$
units vs time in hours counted from 1 a.m. of April 7, 2001; (b)
hourly energy demand in MW h; time span as in (a) but expressed
in actual years.
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FIG. 2. Prices and demand in the Alberta power market: one
month from January 1, 2007 to January 31, 2007, time in hours. (a)
Hourly prices in C$ units; (b) hourly energy demand in MW h.

power grid (AIES), and it is a mandatory pool. The AIES is
connected with other major grids, and participating produc-
ers burn mostly coal and gas. Pool prices, in Canadian dol-
lars (C$), are hourly averages of system marginal prices
(SMPs) determined by AESO every minute, and the cap is
1000 C$ per MW h. AESO operates also a real-time balanc-
ing market and other subsidiary and financial markets [9],
and posts a default price of 1000 C$ in some very special
and rare cases. Figure 1(b) shows the recorded associated
demand in MW h.

Price formation in power markets can be very different
from price formation in the stock market. Moreover, each
power market is different from all other power markets.
Electricity price formation relies on so many interacting lev-
els, each of them with many possible variants: the primary
fuel markets, the physical electricity transport network, the
institutional settings and rules that match demand and sup-
ply, the players’ decision patterns and interactions, the pure
financial level, and the interregional interactions. Electricity
price formation ultimately depends on a repeated decisions
game with a price as its outcome, played under a number of
constraints that vary from market to market. This notwith-
standing, and maybe surprisingly, stylized facts more or less
common to most power markets can be extracted from price
time series coming from very different markets. The exis-
tence of stylized facts encourages hopes of framing in a
mathematical model the essence of abstract power market
behavior.

Figure 1 shows at first sight the signs of the three most
important stylized facts about power markets: A lot of spikes,
which are sudden price jumps, first up and then down; mean
reversion, typical of interest rates and commodity markets
but uncommon in the stock market—in the intermediate and
long run, prices tend to return to an average fixed value; and
presence of a trend and seasonality, with multiple time
scales. Figures 2 and 3 explore the two time series at two
shorter time scales, one month and one week. Figure 1 shows
clear winter-summer 12- and 6-month periodicity (on the
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FIG. 3. Prices and demand in the Alberta power market: one
week from Monday January 6, 2003 to Sunday January 12, 2003,
time in hours. (a) Prices in C$ units; (b) hourly energy demand in
MW h.

back of a constant growth) for the demand, but for prices this
periodicity is not obvious. Possibly an increase of spiking
activity is associated with demand crests at year changes.
Figure 2 shows clear weekly, night-day, and morning-
afternoon periodicity for the demand, and reveals a strong 24
h periodicity for the prices. In particular, spikes appear only
in a limited period of the day, less than 12 h, on the top of a
more regular small-amplitude background. Figure 3 shows
working day—weekend periodicity, but most importantly it
shows the structure of the spikes in the clearest way. Spikes
have a structure and a width, comparable in average with
one-quarter of a day. Higher-frequency data for scales shorter
than 1 h are not available, and data resolution for an average
spike is six data points. Except for strong statistical correla-
tion to daylight hours, and the strong sensation that spikes
require some threshold crossing in demand before being
fired, Figs. 1-3 give no clue about the mechanism at work
when (and right after) a spike is started. Even worse, most of
the seasonality’s characteristic periods are hidden with re-
gard to the price series and clearly visible only in the asso-
ciated demand series. Models have to confront these data,
but also have to take into account the economics of the un-
derlying phenomenon.

III. ECONOMICS OF THE ALBERTA POWER MARKET
AND SOME EXPLANATIONS OF SPIKING

In this section some very basic information about the eco-
nomics of the Alberta power market is reviewed, mainly for
two reasons. First, since a nonlinear dynamics is proposed as
a model for such a market, it is important to understand
where this nonlinear mechanism could originate. Second,
since the model proposed is different from more common
stock market models, it is important to understand where the
difference between power markets and stock markets comes
from, to put the proposed model in the right perspective.
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A power market is a market where committed promises of
delivery of units of electric energy (usually expressed in
MW h), throughout given hours and at given places, are ex-
changed. Electric energy, which is the source of this market,
is a very peculiar commodity [10], with a peculiar econom-
ics, which here will be analyzed at four levels: storage and
generation, transport network, institutional, and financial.

Electric energy can be stored in a very limited way, so
that it has to be produced spot on demand. Its generation
costs depend on the intensity of the demand. At standard
demand intensity (off-peak time) only less expensive base
generators are active, burning steadily nuclear fuel, oil, or
coal. In case of a sudden high demand (peak time), more
expensive generators, burning gas, are turned on for a short
time. Storage difficulty results in difficulty in smoothing of-
fer and demand mismatches.

Transport of electricity from producers to customers is
made through the power network, or grid. Local and nation-
wide power networks are connected among each other by
few links, whereas local topology can be very intricate. In
each local network, producers and consumers share the same
wires, which have a limited transport capacity. Energy trans-
fer from one grid point to another affects immediately, and
always all players, in a coherent way, due to the Kirchhoff
laws. Coherency is very strict also because the whole net-
work is synchronized to the same frequency. Even small in-
stantaneous imbalances of demand and supply can congest
the whole network and disrupt its functioning, not to mention
link or equipment failures. Characteristic of such a coherent
(and sometimes scale-free [11]) system is the temporal and
spatial dynamics of its failures, which sometimes result in
blackouts. Another very interesting aspect of power grids is
the coevolution in advanced markets of grid development
and growth of electricity demand, which can make of a
power grid an adaptive, perpetually out-of-equilibrium, criti-
cally self-organized system [12].

At the institutional level [6], in the Alberta market few
producers match their electricity offer with the demand of
many consumers. AESO carries on two distinct functions and
for this reason it is called a pool [13]. First, it operates the
network, taking care of the production and delivery timing
and of the transport congestions as an independent system
operator. Second, it operates a power exchange. AESO ag-
gregates demand and supply following an auction scheme
[14], taking into account engineering requirements and com-
puting the SMPs, which are matching prices that also opti-
mize the electricity flow in the grid. For this market, the
Canadian regulator imposes a maximum attainable price,
called a cap. As in most exchanges, to ensure timely delivery
to final customers and proper power grid operation, hourly
prices for | MW h and for each day are auctioned during a
day-long session held one day in advance of the day of the
physical delivery (day-in-advance market). Since producers
are few, supply side price formation is the result of compe-
tition among oligopolistic producers [15], and it is usually
studied with a Cournot model where collusion among sup-
pliers is taken into account as possible and frequent [16].
When achieved, collusion leads to market power, which re-
sults in prices much higher than perfectly competitive prices
(like those in the stock market) and possible restraints on
power production (a means to raise prices).
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FIG. 4. Generation costs vs quantity produced, in arbitrary units.
Supply of goods is offered for a cost price (continuous curve), and
demanded quantity (thick dashed line) sets the equilibrium price at
its crossing with supply. If demand decreases (dotted line) or in-
creases (slash-dotted line) with respect to some average value, the
equilibrium price decreases or increases following demand
variations.

At the financial level, bilateral contracts with delivery
prices set months in advance can be exchanged inside or
outside the market and interact strongly with the exchange
price mechanism through expectation formation. Finally, it
should always be remembered that a power market is essen-
tially an evolving and adapting social institution, and ex-
change price time series often embed abrupt rule changes.
Not surprisingly, power grids are sometimes considered the
most complicated machines man has ever built [17,18], and
power markets are just the decentralized and intricate deci-
sion schemes designed to operate these machines.

Coming to the explanations of spiking, it should be noted
that spikes can be a bad thing. They make free-market energy
trading a risky business, and customers exposed to marked
prices upset. But since nobody would refrain from turning
lights on in the dark before checking electricity quotations,
demand is usually considered rigid in the short run, not very
sensitive to price levels. Microeconomic theory proposes
some explanations, not mutually exclusive, about spike gen-
eration. Here only the five most common ones are reported
and shortly commented on. Generation costs increase
sharply with produced quantity, as shown in Fig. 4 (rigidity
of demand is represented by the extreme steepness of the
demand curves), since after a certain level in required power
increasingly costly generators must be turned on in a se-
quence (and starting itself is costly). Equilibrium prices then
cyclically and rigidly follow production costs for a cyclic
demand. This explanation alone is not very convincing, since
spike shape is far too variable in comparison to just variation
in demand. Fuel costs, especially for gas [19], are mean re-
verting, modestly spiking themselves, and very volatile, but
they can explain electricity price variations only on scales
much longer than a few hours. Grid congestions are more
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interesting, since they are very frequent and link demand to a
nonlinear interplay between the spatial network structure
(like the blackouts), the transmission rights market, and stra-
tegic behavior of producers and subnetwork owners finalized
to raise prices. In the case that a grid can be represented as a
scale-free network steadily close to criticality (maybe be-
cause of coevolution with demand growth), congestions
could have an even stronger impact on price formation at a
short time scale. Correlation with other spiking grids [20]
could be considered, but that would not explain why the
other grids spike. Last but not least, the auction protocol is
an extremely interesting candidate. The power exchange
does not compute SMPs as crossings of demand and “objec-
tive” supply curves. Producers take strategic decisions when
posting quantities and prices, they can read published data
series in which competitors hide their countermeasures, and
post “strategic” supply curves [21]. When they are few, it is
too tempting not to exercise their market power, and even
without explicit communication herding behavior can set in.
An improvidently designed auction protocol combined with
the possibility of easily induced congestions (the power ex-
change takes into account the ISO constraints when forming
prices) can be a powerful mechanism for nonlinear and
threshold behavior of prices. Only the triggering instant is
not certain, but in this case a noisy environment can play a
major role.

IV. CURRENT MATHEMATICS OF POWER MARKETS
AND SCALING

Spikes are studied mostly in the frame of standard finan-
cial modeling. Continuous time and continuous price sto-
chastic interest rate models are often considered as the start-
ing point for such modeling [10]. As is very common in
finance, an additive or multiplicative uncorrelated continuous
process is used as a noise source, modulated by a quantity
called volatility. An extra Poisson point process can be
added, giving up price continuity, and, if continuity is not
considered essential, more general Lévy processes can be
explored. Jump processes might better mimic power price
variability, but they open the door to mean reversion prob-
lems because it is hard to have a process strongly revert only
after a discontinuous jump, and weakly revert for the rest of
the dynamics. A strategy that preserves continuity is that of
embedding a continuous model in a Markov M-state regime
structure [10,22], where the parameters of the model change
in time following an accessory M-state process. Two-state
processes are interpreted in terms of system switches be-
tween two financial states, maybe turbulent and normal.
Other models include stochastic volatility or they are essen-
tially discrete in time. A less standard strategy is to give up
dynamical equations while preserving continuity, by using
infinitely divisible cascades (IDCs). IDCs [23] can be used to
build continuous stochastic processes by defining them start-
ing from their distributional and scaling aspects, and they
have multiscaling properties. In finance they were introduced
in [24] for the stock market. In [25] such a scheme is used to
study data from NordPool, a Scandinavian power exchange.
A wavelet analysis is carried out and the results are not con-
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FIG. 5. Multiscale analysis: Morlet continuous wavelet diagram
of the Alberta power market price series; on the time axis all hours
from April 7, 2001 to April 6, 2007; on the vertical axis the ex-
plored scales—the shortest scale at the bottom, in hours.

clusive about multifractality, but this kind of analysis is in-
teresting because it is close in spirit to many studies made by
physicists about scaling, fat tails, and memory in finance [8].
Figure 5 shows a multiscale wavelet analysis [26] for the
Alberta price series. In the diagram, to each hour in the stud-
ied series (on the abscissa) and to each scale from a given
range (on the ordinate) is associated the modulus of the
wavelet coefficient (different gray intensities correspond to
different values), giving immediate visual information about
the local regularity of the series at a given scale. In this case
no special inhomogeneity seems to show up at short or in-
termediate scales, ruling out multifractality. If scaling is sus-
pected, a direct autocorrelation or spectral analysis of the
price series can be made, as shown in Fig. 6, but if nonsta-
tionarity is suspected as well, autocorrelation results should
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FIG. 6. Alberta power market price autocorrelation function
(ACF) and spectrum. (a) ACF vs lags expressed in hours; (b) power
spectrum P(v) on a log-log scale, where v=1/(lag).
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be interpreted with care (in this case the wavelet analysis is
more suitable than autocorrelation). Figure 6 will be dis-
cussed more accurately in Sec. VIIL.

V. STOCHASTICALLY RESONATING SPIKING AND THE
SOFT e REGIME IN THE FNS

In Sec. VI the FNS will be taken as a basic mathematical
model for the power market. In this section, an overview of
the stochastic FNS will illustrate why at first sight such a
system can seem unsuitable for this purpose, and it will sug-
gest how to find a resonating regime and a choice of param-
eters that can make the FNS work rather well as a power
market model. The focus will be on two features of the FNS
stochastic dynamics, namely, the intrinsic presence of three
competing time scales and the complex reaction of the FNS
to a stochastic periodic forcing.

The FitzHugh-Nagumo model originates from mathemati-
cal biology, where it was introduced as a simplified model of
the deterministic voltage x(7) and current y(z) dynamics in
time ¢ at a chosen spot in the neuron membrane, as a reaction
to an external stimulus f(7). In this model, the initially qui-
escent neuron reacts to a current pulse by firing a spike in
voltage. During the spike time and for a stretch of time after
the spike the neuron cannot react to other stimuli—this is
called its refractory period, of time length T',. Right after the
spike the voltage comes back to its previous value, stays
there until the end of the refractory period, and comes back
to its quiescent state. This dynamics is modeled by the two
original FitzHugh-Nagumo deterministic coupled nonauto-
nomous ordinary differential equations [5,27] in their sto-
chastic version [4,28,29] as

et=g(x) -y, (1a)
y=yx+b-py-ft) +0(d)éE, (1b)

where
g(x) = kx — \x°>. (2)

In Egs. (1a) and (1b) €>0, v, b, =0, and o>0 are con-
stants, ¢ indicates the derivative of the Wiener process, i.e., a
S(r)-autocorrelated normal process, and x>0, N\>0. The
standard deviation o sets the noise intensity and it is com-
monly defined in terms of a diffusion constant d>0 as
o(d)=+\2d. vy couples the two equations, and for y=0 and
f=0 the second equation becomes a stand-alone Ornstein-
Uhlenbeck process, which reverts to its mean » on a time
scale 1/. For y=0 Eq. (1a) can be interpreted as describing
the unidimensional overdamped motion of a particle in a
double-well potential U(x)=—["g(x')dx’, with either one or
two minima x,_ and x,, local or global. In fact, the number
and type of minima are parametrically controlled by y. For
y=0, U(x) has two global minima. For y # 0 it has only one
global minimum whereas the other minimum is either only
local or disappears. When y+# 0 the two equations can be
viewed as subject to different time scales. Taking the scale in
which 7 is measured as a reference, in the first equation time
gets multiplied by 1/e. The FNS is usually studied in the
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FIG. 7. Nullclines and potential U for k=1, N\=1, b=2, y=1,
B=1, f=0, where the meaning of x_, x_, y,, y_, Xo4, Xo_, ®, O, and
V is explained in the text; U, x, and y in arbitrary units. (a) Phase
space with x and y nullclines, the left and right branches of the x
nullcline being indicated by a thickened line; (b)—(d) potential U(x)
for different values of y: y= (b) —0.25, (c) -1, (d) 0.25, and (e) 1.

singular regime where e< 1. In this regime every change of
x is faster than any change of y. In this case, x is called the
fast variable and y the slow variable.

In a phase plane picture and in the singular regime, it is
then significant to draw the x and y nullclines, which are the
static curves obtained, respectively, for x=0 and y=0 (and
o=f=0). The two nullclines for Egs. (1a) and (1b) are shown
in Fig. 7(a), with a continuous line for the x nullcline and a
dot-slashed line for the y nullcline. The x nullcline has three
branches, separated along the abscissa by the points x_ and
x, for which g’(x)=0, which correspond, respectively, to y_
and y, along the ordinate. The left and right branches are
called the stable branches. The branch in between is called
the unstable branch. For yE[y_,y,] the phase plane region
included between the two stable branches can be called the
core region, where most of the dynamics is confined. The
intersection P,={x.,y,} of the two nullclines can set the
stable or unstable fixed points of the dynamics. Outside the
singular regime, for e=1, the fast and slow dichotomy is
blurred and the nullclines are more a guide for the eye than
an analytic tool.

In the singular regime, a spike can be understood as a
feedback cycle in the core region of the phase plane, follow-
ing the sequence of the three marks (@,0,V) in Figs.
7(b)-7(d)—where U(x) is depicted for some values of
y—and in Figs. 8(a)-8(c). At y=—0.5<y_ the system state
vector {x(z),y(z)} leaves the quiescent state corresponding
(and close) to the leftmost of the two available minima (@),
and quickly rolls from the bottom of the left stable branch
where the potential has just lost one of its minima to the
bottom part of the right stable branch (O). Then the system
waits on the right branch of the x nullcline (V) until U(x) is
lifted up enough to loose its right-hand minimum.

Keeping the parameters of the x nullcline (i.e., x and \)
fixed, a useful function of the y nullcline is that of control-
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FIG. 8. Spiking mechanism in the absence of noise; ®, O, and
V as explained in the text; x, y, and ¢ in arbitrary units: €=0.01,
k=1, A=1, b=2, y=1, B=1, f=0, d=0. (a) Phase space, (b) x(z),
and (c) (7).

ling parametrically (as a function of b, for example) whether
the FNS operates suprathreshold in a self-sustained oscilla-
tion regime or subthreshold in an excitable dynamics regime.
If the nullclines cross each other only once and on the stable
branch, the fixed point is stable and the system is subthresh-
old. If they cross only once on the unstable branch, the fixed
point is unstable and the system is suprathreshold. This
means that in this second case the fixed point repels the
dynamics, and the system keeps on cycling in the core re-
gion, while x(¢) traces a spike train. In the singular regime,
the time shape of a single spike takes the form of two almost
vertical ramps—the interbranch rolls are very quick—joined
by a flat arch. When the system supports spike trains, all
spikes have the same height, which is set once for all by the
choice of g(x). This is good for neuron modeling, but not
good for power market modeling, where spike heights vary
considerably. And this is probably the reason why the FNS
has not been used in published finance literature as yet.

Equations (la) and (1b) can be merged into a single
second-order equation for x:

e = (k= 3\x* — €B)i — (y— Br)x — BAX® — b + f(1) — o&.
(3)

This shows that the FNS of Egs. (1a) and (1b) is a nonlinear,
damped, forced, stochastically driven oscillator. If a sinu-
soidal forcing f(r)=A sin(w) (A>0) with frequency w; and
period Ty=27/w; is applied through f, this oscillator can
resonate with a broad resonance centered around some w;
with period T;=27/ w;. In Eq. (3) the limit e— 0 is singular.
It has also to be noted that € can be increased toward 1 to
slow down the fast variable during a forcing cycle of fre-
quency w;. In Eq. (1b) B can be absorbed into . This is
equivalent to saying that time is measured in units of 1/8
and that the time scale € has just to be considered as relative
to 1/B. Setting from now on B=1 means simply that all
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FIG. 9. Stochastic forced FNS in the SRS regime: €=0.01, «
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parameters on the right-hand side (RHS) of Eq. (Ib) are
taken relative to an implicit 8. The forced deterministic
FitzHugh-Nagumo oscillator can be studied in its A-w; pa-
rameter plane, to show the possibility of phase locking
[30,31]. When the system is set subthreshold by the use of b,
for each w, there is a region AE[0,A,(b, ;)] in which
spikes are not fired that is called the silent region, where only
small oscillations are possible. When A crosses A, from
below, full spikes appear, and no intermediate situation is
allowed. For A>A_,, special curves called deterministic
(m:n) tuning curves can be drawn in this space after impos-
ing the condition that for every n forcing periods exactly m
spikes are fired. Then, there are at least two time scales char-
acterizing a sinusoidally driven FNS: a 7; due to its internal
frequencies or alternatively a 7, due to the basic spike refrac-
tory period, and a T due to the forcing. T, (or T;) is a func-
tion of €. In the stochastic case, a third time scale 7, can be
attributed to the noise spike activation effects.

If noise and periodic forcing are added to a FNS inside
the silent region and close to its edge, with T%/2 close to T,
A slightly less than A, (b, ), and €< 1, the system be-
haves as in Fig. 9. In coincidence with a forcing cycle, some-
times the system fires a spike, and sometimes it does not.
The background dynamics is due to small oscillations and
noise. Just before a spike, the slow dynamics is reverting to
vxo_+b—A, heading toward y_, where the first minimum x,_
is lost, but not being able to cross it. Statistically, it can
happen that the noise’s extra contribution to y(z) pulls the
system below y_, where the spiking mechanism is triggered.
This can be seen happening eight times in Fig. 9(c). When
this happens, the system is on a so-called stochastic limit
cycle [4,29]. This means that, even subthreshold, when as-
sisted by the noise, the system is able to behave statistically
as suprathreshold. In the presence of noise, the deterministic
(m:n) phase-locking condition is replaced by a statistical
(m:n) constraint, which requires that on average m spikes
are fired every n cycles. For example, the system in Fig. 9
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FIG. 10. Stochastic forced FNS in the soft regime: €=0.3, «
=1, A=1, b=2, y=1, B=1, A=2, wr=1.1, d=0.1, x, y, and ¢ in

arbitrary units. (a) Phase space, (b) x(z), (c) y(¢), and (d) f(2)
=A sin(w).

could be on a (1:4) stochastic tuning curve. But a statistical
tuning curve constraint is not coincident with the regime that
is needed here. Under the statistical constraint, absence of
spiking in a period can be equilibrated on average by mul-
tiple spiking even in the same cycle in another period. A
system behaving as in Fig. 9 is selected in a different regime,
requiring a deterministic integer number of spikes per cycle
at maximum. This regime could be referred to as stochasti-
cally resonating spiking (SRS). A nonempty set of parametri-
zations belongs to this regime because of the refractory pe-
riod T, mechanism, which for given 7, allows an integer
number ¢g of spikes to be accommodated such that g7,
<T,/2. The noise activation time 7, controls the firing—not-
firing statistics and the coherence between input f(7) and out-
put x(z), as it competes with T, and T, An effect of the
interplay among these three scales can be seen in Fig. 10,
where € is raised to 0.3, slowing down the fast variable—and
consequently w; is decreased, trying to track the resonance.
The spiking mechanism is being blurred out, as spikes start
losing their identity and gaining variability in height. Look-
ing at the phase space in Fig. 10(a), the e— 1 effect is clear.
The nullcline picture is weakened; the system explores the
right nullcline with more difficulty—even though the activa-
tion mechanism has not changed—and spends more time in-
side the inner core region and closer to the fixed point. In-
creasing € even further toward 1 causes the FNS to abandon
the right nullcline as the spiking regime is completely lost.
This nonsingular and less analytically appealing regime has
not very often been explored in the literature, even though
numerical results like those in [4,32] for €e=0.5 give a clear
indication of what happens there. Then, for financial model-
ing reasons this soft (in contrast to singular) € regime of the
FNS is much more interesting.

A lot of information about the SRS regime is immediately
available as a side product of the numerous studies of sfo-
chastic resonance (SR) [3,4] in the FNS. SR is a property
shown by some systems that have an excitable dynamics—
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FIG. 11. Simulation of power market prices, basic model (FNS)
for €=0.15, k=1, A=1, b=2, y=2,A=2, wf=4, d=0.1, Ar=0.02, x,
v, and ¢ in arbitrary units (1 simulated day cycle corresponds to
Ty=2m/wy=1.57 time units). (a) Phase space and (b) price
explx(2)].

along with many others which are not excitable. When
driven subthreshold in the silent region for a range of noise
intensities d, these systems become particularly reactive to
the forcing frequency for a specific value of the noise. Thus,
they are often studied in the d-w, parameters space. Some of
them, including the FNS, show a doubly stochastic reso-
nance [33], and become particularly reactive for a specific
combination of d and wy. It is interesting to note that in Ref.
[31] the doubly SR condition is associated with statistical
(m:n) phase-locking conditions. With this result of SR in the
FNS in mind, it is easy to jump to the conclusion that for a
given oy there is a range of values for d which inhibit the
resonance.

VI. TWO MODELS FOR THE POWER MARKET

The FNS of Egs. (1a) and (1b) with 8=1 is thus proposed
as a first basic model for the power market price dynamics.
The term b—f(¢)+0é&(r) in Eq. (1b) is identified with the
noisy dynamics of the aggregated demand for electricity.
Since prices p(r) are positive quantities, x(z) can be
interpreted—as is done often in finance [34]—as a logprice,
so that

In p(z) = x(1). (4)

The price dynamics is attributed mathematically to a non-
linear price-forming mechanism, based on (a) stochastically
resonating spiking and (b) a soft € regime, reached where the
€ and the mean reversion (1/8=1) time scales become com-
parable. In Fig. 11 an instance of the FitzHugh-Nagumo dy-
namics in this regime is shown, for f(#)=A sin(w) and a
choice of the parameters that will be discussed later at the
end of Sec. VII. This and all other simulations are done by a
stochastic Euler algorithm with time increments At shorter
than the relevant time scales and with a scaling factor VA¢
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multiplying the Gaussian noise term. Figure 11(a) shows the
phase-space dynamics and the nullclines, Fig. 11(b) shows
the price process.

The spiking pattern obtained in this way is attractive,
since it associates by design the spiking activity with demand
crests, the firing events being random and spike heights be-
ing nonuniform. The FNS nonlinearity is exploited in almost
all the phase-space core region. Since the Alberta price ex-
cursions are intrinsically limited in height, due to the price
cap, the parameters « and A\ can be used to set this span to
the price span observed in the data. This constraint to the
span in x(z) is included naturally (but statistically) in the
FNS. In this soft € regime, the FNS mean reversion mecha-
nism is more complex than in the e — 0 case. Since the € and
the mean reversion time scales are comparable, yx,,+b can-
not be considered a fixed mean reversion target for the y
dynamics, since it varies on a scale comparable to 1. After a
spike activation, during an x() roll in the system potential
U(x) toward the right branch’s newly formed global mini-
mum x,, the (formerly slow) y dynamical equation has a
changing yx(¢) driver that makes y faster and nonlinear in its
mean reversion toward x,,. Moreover, the FNS feedback
mechanism is such that U(x,,) is increased at a velocity
comparable to the y mean reversion velocity—or higher, de-
pending on . This velocity matching can preclude y from
ever reaching x,, as xp, iS yet a minimum, and cause y to
reverse its motion back toward the stable attractor too soon.
In the meantime, the x dynamics cannot reach its full span
and cannot fully spike. Spikes tend to lose their identity more
quickly as 7y gets larger. After a spike is activated because y
has crossed y_ downward, y jerks up suddenly and rapidly
crosses y,, then goes back slowly to the attractor P.. De-
pending on the interplay between € and vy, a large fluctuation
regime mixed with a spiking regime can be attained, which is
now good for financial modeling. This soft € regime has its
own rigid signature in the distribution of crossings of the
phase-space core region, due to the shape of the y nullcline,
and in the rounded and widened right-hand edge of the re-
gion invaded by the dynamics.

An extended model [35] that helps to make the FNS dis-
tributional signature more flexible can be obtained by replac-
ing the linear yx term of the FNS with a hyperbolic sine
function sinh(x) (in Ref. [36] another hyperbolic FitzHugh-
Nagumo system was proposed, a hyperbolic tangent model
studied in the standard way). The system is operated in the
SRS and soft € regime. Its equations are

ex=kKkx—Ax’—vy, (5a)

y=sinh[Y(x — )]+ b= By - f(1) + o(d)¢, (5b)

where ¢ is a constant, and the definitions and limitations of
the remaining parameters are the same as in the FNS dis-
cussed in Sec. V. The choice of the sinh(x) function is just
one among many other possible choices, since what is im-
portant now is the mechanism that the shape of the chosen
function implements in the phase space. Peculiar to the ex-
tended model is the monotonic but twisted shape of its y
nullcline. As a hyperbolic function, sinh(x) explodes expo-
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nentially at moderate |x| values, and is close to linearity
around 0. Centering it on c, dilating it with v, and shifting it
along y by means of b allows one to place it at any chosen P,
along the x nullcline and to implement a nullcline concavity
or convexity in the inner part of the core region. More im-
portantly, in the soft € regime the twist can be used to modify
the FNS feedback mechanism and to prevent the system
from accessing part of the phase space, due to the extremely
large values that sinh(x) can attain even for moderate values
of x. Moreover, the convex parts of the nullcline favor spike
formation whereas concave parts disfavor it, modifying the
distribution of inner core region crossings. Consider, for ex-
ample, the following parameter selection: €=0.15, k=A=7y
=1, b=0, =2, c=-1. At 0=0 and w=4, a check can be
made for a range of values for A, for example from 2 to 10.
As A increases, the access to the inner core of the phase
space is gradual and there is no abrupt qualitative change
between small oscillations (A=2) and standard spiking orbits
(A=10). This behavior is then different from that of the FNS,
in which an A, rigidly separates small oscillations from
spiking. In some sense, in the extended case the system can
be precluded full access to true excited dynamics, depending
on the y nullcline shape and position. The distributional sig-
nature of the extended model will be clearly visible in the
statistical analysis carried out in Sec. VIIL.

At first sight the two models have very similar spiking
patterns, so that both can be used if only the solution pattern
is important. Consider, for example, the extended model with
€=0.15, k=\=vy=1, b=0, (=2, c=-1, as before, d=0.1, and
a multiperiod forcing of the form

f(0)= u|:v sin(%;) + Sin(wft)}, (6)

where wf=4, u=2, and v=0.06. For this choice, Tf=277/ wf
~1.57 corresponds to a day of the market data, and if the
simulation time span is chosen as 3500 with Ar=0.035, ap-
proximately 6 years can be simulated. Figure 12 shows a
simulation for d=0.1. Figure 12(a) shows the price series and
Fig. 12(b) shows the forcing with its double periodicity, a
very rough approximation of yearly and daily periodicity of
the Alberta market. Figure 12(a) has to be compared with
Fig. 1(a).

At the large scale, the model is able to spike at the yearly
crests of the demand with higher frequency but with almost
the same height distribution as at its lowest point, as for the
real market. At the intermediate and small scales, as can be
seen in Fig. 13 where the time span of 50 time units corre-
sponds to 1 month, the shape of the spikes is smoother than
in the real market and only one spike per day is allowed (by
design). The impression that the simulation output is
smoother than the real price series is partly due to the fact
that there are only 24 Alberta market data points per day,
whereas in the case of the simulation the mesh can be chosen
freely. In the real market each day can support more than one
spike. The model can be adapted to this behavior in two
ways. Either another subdaily periodicity can be introduced
in Eq. (6), or the parameters can be adjusted to admit mul-
tiple spiking. Another difference with real data comes from
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FIG. 12. Simulation of six years of power market prices; ex-
tended model for €=0.15, k=1, A=1, b=0, y=1, é=2, c=-1, f as
in Eq. (6) with u=2, v=0.06, w=4,d=0.1, Ar=0.035, x, y, and t in

arbitrary units (again, 1 simulated day cycle corresponds to T

=27/ w;=1.57 time units). (a) Price process; (b) forcing: the
smaller yearly w;/365 frequency modulates the much higher daily
oy frequency, which cannot be resolved in the picture.

the fact that in the simulation each spike occupies a full 12 h
time span, and the background small oscillations observed in
the real data are lost. Fine tuning of the model can improve
this aspect too. In Fig. 14 different parameters, in particular a
smaller w, are used. Figure 14(a) shows the phase space with
dynamics and nullclines, in particular the sinh(x) nullcline.
Figure 14(b) shows the price dynamics, where the small os-
cillations and some multiple spiking are evident. In any case,
the main strength of the two models appears to be the
smoothness of the height distribution at all scales, certainly
not sharp as in the usual FNS singular regime. A main weak-
ness shared by the models is that steady growth in demand

exp(x)

2 I I I I\ I I I

FIG. 13. Simulation of 1 month of power market prices; ex-
tended model with the same parameters and units as in Fig. 12. (a)
Price process; (b) forcing.
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FIG. 14. Simulation of power market prices, extended model,
for €=0.1, k=1, A=1, b=1.8, y=1, £€=2, c=-2/3, A=2, wf=0.3,
d=0.1, arbitrary units. (a) Phase space and nullclines; (b) price
process.

cannot be implemented in these models for long times. This
problem will be considered in Sec. VIIL.

VII. SPIKE STATISTICS

The advantage of using the FNS to model the price series
of the Alberta power market is double. Not only can a satis-
factory spiking pattern be obtained, but also a fundamental
statistical property of the price time series is automatically
recovered. This can be shown using again suggestions from
SR studies. SR in sample data is studied mainly by two
means, the interspike interval (ISI) distribution [37] and the
ensemble-averaged (since these systems are nonstationary)
power spectrum. For a signal x(z;) dependent on a set of N
equally spaced times ¢; (i=0,...,N) of spacing Az, an ISI
sample frequency histogram is prepared by selecting a refer-
ence height & and defining “operative spikes,” the contiguous
portions of x(z) above &, of number S. The collection of first
passage times ¢;(h) from below to above / for each opera-
tive spike j is the set of spike times. The collection of pas-
sage times p;(h) from above to below £ for each spike j is
the set of spike return times. The collection of the differences

ti(h) = i1 — &; (7)
of immediately adjacent spike times is the set of interspike
widths. The collection of the differences

5(h)=p;— ®)

is the set of intraspike widths. For any A, the ISI histogram
with n on its abscissa is constructed by counting for each
integer n=1,...,N the number of interspike widths that
match the condition tj=nAt, j=0,...,S. An intraspike width
(ISW) histogram is constructed by counting in the same way
the matchings for the intraspike widths, including n=0 in the
matching condition. For a FNS operating in the singular re-
gime, all spikes have the same height, so that the shape of
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FIG. 15. ISI frequency histogram of the Alberta price series at
price reference level 200 C$; on the abscissa time lags in hours. (a)
Values on the abscissa are clipped at lag 100, the last bin containing
all the remaining frequency weight; (b) the abscissa spans all ana-
lyzed lags whereas the ordinate is cut at frequency 0.01.

the IST histograms is rather insensitive to h~—as long as & is
far from the background noisy small oscillations. This is cer-
tainly not true for time series like the Alberta prices series of
Fig. 1(a) or for the output of models that try to explain such
series. Information about the height distribution of the spikes
can then be obtained by counting the number of spikes which
reach a given price (higher than ), in a spike height (SH)
histogram. From SR studies, a lot of knowledge is available
about ISI properties of the FNS. The main result is that the
ISI shape in the SRS regime is a collection of isolated peaks
with heights that follow an exponential or a I" function de-
cline. Since the system cannot fire for half cycle 7, the cor-
responding multiples of 7,/2 interspike widths are sup-
pressed, whereas multiples of T, contribute. If the condition
of one spike each half cycle is not strictly matched, this
picture is somewhat blurred. The exponential (i.e., Poisso-
nian) decay is due to an essential independency of the trig-
gering events.

For a reference height of 200 C$, in Fig. 15 the sample
frequencies of interspike widths (each bin contains 1 h and
the first bin is at lag 1) are shown for the Alberta market data.
Figure 15(a) is a magnification clipped from the abscissa at
100 C$ of Fig. 15(b), which is cut in the ordinate for clarity
to show the longest interval counts. The last bin of Fig. 15(a)
is there for comparison, since it contains the weight of the
clipped-out tail. Figure 15 shows a major feature. In its first
part the Alberta ISI distribution seems exponential, but it has
clearly a long nonexponential tail in its second part. The
exponential seems to be built of peaks that appear—as
expected—at the market periodicities, i.e., subday and many-
day scales. The highest subday frequencies are under (and
include) 3 h (at least two spikes each morning or afternoon)
followed by peaks at 6 h (morning-afternoon periodicity),
and those at day-night 12 h. After the 24 h peak a long tail
begins, and a 48 h periodicity is clearly visible. In Fig. 16(a)
the ISW frequency histogram shows that spikes of different
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FIG. 16. ISW and SH histograms of the Alberta price series at
price reference level 200 C$. (a) ISW frequencies vs time widths in
hours; (b) SH counts vs prices in CS$.

widths are present in the Alberta price series, but most of
them last only a few hours. Figure 16(b) shows the count of
spikes with different heights (each bin has a span of 10 CS$).
Above an exponential background, some prices seem curi-
ously more frequent, whereas the price cap (and the special
events default price) at 1000 C$ shows an expected behavior
very different from other prices.

An analogous statistics can be collected for the simulated
process of Fig. 12. In this case the model data set can be
made larger than the sample of the market data set. Choosing
the reference price height at 1 (units are here arbitrary), Fig.
17 shows ISI sample frequencies on a rescaled abscissa, ob-
tained by dividing the simulation times by 7/(24A1), to ex-
press the simulation time in hours. Each bin contains 1 h.
The general pattern is similar to the pattern found for the real
market, a possible I function built by peaks centered on
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FIG. 17. ISI frequency histogram of the extended model at price
reference level 1, lags in units of Tyl 24 (i.e., simulation hours, see
text). (a) The abscissa is cut at lag 200; (b) all analyzed lags.
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FIG. 18. ISW and SH histograms of the extended model at price
reference level 1. (a) ISW frequencies vs time widths in T;/24 time
units (i.e., simulation hours); (b) SH counts vs prices (arb. units).

multiples of the 24 h basic frequency, with a long nonexpo-
nential tail. The peak of the I" function depends on the acti-
vation time 7, (i.e., on d), and for higher d it can be moved
to the left. Figure 18(a) shows the ISW frequency histogram.
In the simulation all spikes have a width of 12 h at their base,
as can be seen from Fig. 13(a). Moreover, spikes of the ex-
tended model are generated by soft excursions in the phase
space, in a way that is different from the singular regime. A
vertical cut in the phase space intersects some spikes that are
fully developed which set the maximum width. Other spikes
that cannot develop form the left tail of the distribution. Fig-
ure 18(b) shows the SH count histogram, and the effect on
the peak heights of the particular position chosen for the y
nullcline. Comparison of real-market and simulation statis-
tics corroborates the idea that in the real market a SRS
mechanism is at work.

The basic and extended models work essentially in the
same way, the advantage of the latter being mainly its finer
control of SH profiles, an important advantage for economet-
ric analysis. A comparison between them can be made by
considering the analytical form of the y nullcline in the ex-
tended case. When the nullcline center {c,b} is placed on a
P. of the x nullcline, a first-order Taylor expansion around c,

sinh[ y(x — ¢)] = — yc + x, 9)

suggests that it behaves around P, as the nullcline of a FNS
model for which —yc+b replaces b, whereas vy is the same.
The parameters used in the simulation of the basic model
shown in Fig. 11 are obtained from the parameters used in
the simulation of the extended model shown in Fig. 12 by the
use of Eq. (9). A difference can be appreciated by comparing
their ISW and SH histograms. The data from the basic model
shown in Fig. 19 can be compared with the data from the
extended model shown in Fig. 18. Both simulations are ob-
tained under the same conditions—except for b of the basic
model. The main qualitative difference is the shape of the SH
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FIG. 19. ISW and SH histograms of the basic model at price
reference level 1. (a) ISW frequencies vs time widths in T¢/24 time
units (i.e., simulation hours); (b) SH counts vs prices (arb. units).

histograms, which is better for the extended model when
they are compared with the Alberta data shown in Fig. 16.
When accuracy of modeling is important, it can also be con-
sidered that in addition to the sinh(x) function there are other
possible functions with an analogous topology, such as
monotonic high-order antisymmetric polynomials or the sim-
pler but very interesting exp(x) function. In this sense, the
extended model has to be considered more as the represen-
tative of a class of possible fine tuning extensions to the
basic model, than a model on its own.

VIII. STATIONARITY, AUTOCORRELATION, AND THE
PROBLEM OF SPIKING

Many power market financial data sets come without de-
mand data, and they are sometimes already averaged over 24
h, so that in this last case intraday information is lost to-
gether with the 24 h periodicity. Then, even though the non-
stationary SRS mechanism cannot be invoked to model
them, it is not unreasonable to search for stationary mecha-
nisms that nonetheless try to exploit the resonance idea—
making no use of forcing. Another well-studied property of
the FNS, coherence resonance (CR) [4,28], can again deliver
helpful suggestions. As seen in the discussion of Sec. V, in
every regime the FNS has an intrinsic resonating capability.
When set subthreshold without forcing, noise itself can ex-
cite some of its resonating modes and have these modes
show up in the FNS dynamic behavior. This is CR, and it is
in this aspect a stationary phenomenon. A further and more
obvious possibility for a stationary regime is that of exploit-
ing the suprathreshold self-sustained FNS dynamics, associ-
ating the daily periodicity with the intrinsic nonlinear oscil-
lator frequency. In both cases, since the model is
autonomous, it is more difficult to take into account all the
periodicities that real-market data in any case display.

The issue of nonstationarity due to a steady demand
growth is more complicated but very interesting. If () has a
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component linear in #, the subthreshold system is slowly
made more reactive to noise as f(f) grows in time, until the
model crosses the threshold and disruptively enters the su-
prathreshold regime. If some parameter in Egs. (1a) and (1b)
is allowed to change in the meantime, a dynamics can be
imagined that holds the system in a given subthreshold SRS
regime as f keeps growing, in a sort of out-of-equilibrium
steady state. This could happen to some advanced real-world
power markets, where demand and network development co-
evolve. In this coevolution case, adaptive parameters could
be difficult to design, but possible to implement. In contrast,
looking at the Alberta market data, a certain impression of
continuously increasing spiking activity in time might come
to mind. In this second case, models based on the FNS could
find their limits.

The power spectrum technique was not used in this paper,
but the very possibility of its use—besides ISI
histograms—is suggestive of a brief consideration. The Al-
berta demand series and most probably the associated price
series are nonstationary. This can be seen—a posteriori—
from Fig. 6, where the autocorrelation and power spectrum
for the Alberta price series are shown. In the absence of
demand data, and in the case of preaveraged series, the ex-
tracted autocorrelation would show no peaks and it would
show a long tail. The power spectrum would show a linear
behavior in a log-log scale. This behavior could be inter-
preted as memory—and not as due to a different mechanism.
Even though multifractality can be excluded by some multi-
scale method, memory would leave open the possibility for
non-Brownian monoscaling. Before running the autocorrela-
tion, some form of seasonality could obviously be suspected,
and a deseasonalizing procedure would be run on the data
before the autocorrelation analysis. If the mechanism of price
formation is SRS, where a noisy periodic demand forces a
FNS engine to randomly spike, this deseasonalizing would
tweak the data, in a further misleading way. Thus, the ISI
technique seems to be the most appropriate to compare any
proposed model to the market data.

A last issue is linked to the economic fact that spikes are
an unwanted phenomenon. The modeling proposed here
draws from the FNS knowledge, which has been accumu-
lated in time also because of SR and CR studies. If the main
idea of this paper is correct, a market can be seen as an
algorithmic machine that is tuned for some reasons (grid
properties and auction protocol) to the demand periodicity. In
a sense, detuning by change in the noise properties (this is
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what SR and CR suggest) or in the system parameters could
reduce spiking and lessen the problem. For example, avail-
ability of demand knowledge is linked to the noise perceived
by the suppliers, and day-ahead scheduling in the auction
protocols introduces a characteristic frequency. Maybe a
change in auction protocols could then disrupt resonance, at
least for some time. Microeconomic analysis in this direction
could help to soften the spiking problem.

IX. CONCLUSIONS

This paper studied the open financial problem of price
spiking in power markets using ideas that come from phys-
ics. Spiking in power markets reminds one in a natural way
of fluctuations in stochastic dynamical systems. Following
this idea, it has been shown that a resonating stochastic FNS
dynamics in a soft € regime for the logprices is able to re-
produce market spike patterns and their main statistical fea-
tures. These results suggest the exploration of other similar
nonlinear dynamical systems as power market models, and
some of them are under current investigation. In the process
of adapting the statistical signature of the FNS to real-market
features, an extended model has been developed that prob-
ably brings in some interesting mathematics—partial sup-
pression of excitability. This is also under current investiga-
tion, with its implications for SR and CR.

To conclude, the spirit of this paper is not related to fi-
nancial econometrics, not even related to a stochastic reso-
nance or a coherence resonance study of the models. The
main effort has been that of drawing from existing fields of
physics some ideas that could be used to help study an open
problem in finance, and in the meantime developing models
that could also be used in physics. The approach proposed
here for the spiking problem has been different from the
more usual search for self-similarity in financial systems—
here scales matter, but this is because physics has a lot of
tools that can be used when approaching financial problems.
On the side of finance, nonlinear continuous time finance is a
very recent area of research and it can find in the approach
proposed here an interesting spiked drive.
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